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Electrochemical models that predict the performance of batteries Theoretical Development

accurately are usu'ally co_mplex becau§e of the nonlinear coupling of o geometry modeled is shown in Fig. 1. The cell consists of a
the dependent variables in the governing equatidrEhese models jithiym-ion foil, a microporous separator, and a porous electrode
have been used by various researchers to optimize the (_:eII de&gr@e_g’ carbon or LiMRO,). The following assumptions are mad@:
study the effect of system parameters and thermal behavior. Modelgischarge behavior is dominated by solution-phase diffusion
ing of electrochemical behavior of secondary battefiiée lithium- jimjtations?® (ii) kinetic and diffusion-phase limitations are negli-
ion batterieg involves solving electrolyte concentration and electro- gible, and(iii ) diffusion coefficient and transfer number are indepen-
lyte potential in the separator; and electrolyte concentration,dent of the electrolyte concentration.
electrolyte potential, solid-state concentration, and solid-state poten- In the absence of potential gradients and under uniform current
tial in the porous electrode? Even when one-dimensional transport distribution, the electrolyte concentration is governed by simplified
(in x) is considered, these models involve two coupled nonlinearequations:* The geometry modeled consists of two regions, a sepa-
partial differential equationgin x, t) in the separator and three rator (0< x < Lg and a porous electrodd { < x < Lg + L).
coupled nonlinear partial differential equatidis x, t) in the porous  The concentration of electrolyte in the separator,(mol/n®) is
electrode"? In addition, solid-state diffusion should be solved in the governed by Fick's law of diffusion
pseudodimensiofr, t) in the porous electrode. For predicting the 2
; = ) ac, a%c,

thermal behavior, one must add an additional equation for tempera- — =D—p [1]
ture in both the separator and the porous electrode. at X

Analytical solutions for the mathematical models of Li-ion bat- ) o o )
teries are available for very few limiting cast$.Doyle and Wh_ereD is the diffusion coefficienfm /§) of the electrolyte. A ma-
Newmar} presented a few limiting cases and analyzed the electroerial balance governs the concentration of electrolyte (nol/nt’)
chemical behavior of Li-ion batteries using these simplified modelsi" the porous electrode
under certain operating conditions. Complexity of the modafsi ac, a2c,
hence the need for numerical solutiarises due to one or more of e— = De'® = + aj,(1 —th) 2]

i " ¢ . at ax

the following reasong(i) nonlinear coupling between the electrolyte
potential and electrolyte concentratiofconcentrated solution
theory); (ii) nonlinear Butler-Volmer kineticgjii ) nonlinear depen- area(m %), andj, is the pore wall flux of lithium iongmol/n?/s).

den_ce of exchan_ge current on the electrolyte_ or _SOI'd'Sta_‘te CONCeIRote that the Bruggeman expression has been used for obtaining the
tration, (v) nonlinear dependence of open-circuit potential on the gffective diffusivity in the electrolyté.
solid-state concentrationy) dependence of electrolyte conductivity Uniform initial conditions are assumed throughout the sandwich
or electrolyte diffusion coefficient on the electrolyte concentration,
(vi) dependence of solid-state diffusion coefficient on the solid-
state concentration, a_mhﬂ) de_pendenqe of transfer number on the For a galvanostatic discharge, the rate of discharge governs the mass
electrolyte concentration. Typically, Li-ion battery models are com- flux atx = 0 (Li foil)
plicated because of a combination of more than one of the above
reasons. acy I(1—1t")

A Li-ion cell sandwich consists of a lithium foil, separator, and a Ox = "7 nDE atx=20 [4]
porous electrod&? To obtain the concentration profiles in the po-
rous electrode, one must solve for the concentration in the profiles iRynere| is the current densityA/m?), n is the number of electrons
both the separator and the porous electrode. Even when the potentighnsferred in the electrochemical reaction< 1 here, andF is

drop in the porous electrode dominates the net voltage of the celthe Faraday constant. The mass flux is zero at the current collector

wheree is the porosity of the electrode,is the specific interfacial

Cp=C=cgatt=0 [3]

sandwich, one must solve for the equations in both separator angd, _— Lo+ Lo

porous electrode. This is true because the boundary condition for the

electrolyte concentration at the porous electrode/separator interface aC;

is not known. In this article, we arrive at this boundary condition by ox 0atx=Ls+Le (5]
modeling galvanostatic discharge behavior of a Li-ion cell sandwich

under solution-phase diffusion limitations. Concentration and mass flux are continuous at the separator-porous

electrode interfacex(= L)
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Table I. Values of parameters used in the simulation.
Parameters Value Parameters Value
D 2.6x 10710 m¥s € 0.35
L app 60 A/m? Ls 25 um
i F 96,487 L. 125 um
“—
-~ Separator Porous electrode t* 0.20 Co 1000 mol/n}
(1 — thHL?
= —— 1
J FDLCpe [13]
x=0 The dimensionless initial condition is
L L. C1:C2:1 att =0 [14]
The dimensionless boundary conditions are
—_
% Jer atx =0 15
Figure 1. Lithium-ion cell sandwich, consisting of lithium-foil, separator, ax veraa= [15]
and porous electrode.
% g atx-1 16
=0 atX=1+r
9 [16]
—_— 3/2— = = =
X x at x = Lg [7] Ci=C,atX=1 [17]
) i o . 9Cy 3,9C2
Equations 1-7 govern the concentration distributions in the cell X X at X =1 [18]

sandwich(separator and porous electrpde

When the open-circuit potential depends strongly on the state o
charge of the system or when kinetic resistances dominate ohmi
resistanced? it is possible to assume thatis given by its average
value everywhere in the porous electrode

In= _aFLC (8]
When Eqg. 8 is substituted in Eqg. 2 we get
ac, 0% (1 —tF)
£t T 7 o2 nFL, (9]
The following dimensionless variables are introduced
C1
C,= %
Co
C, = c
X X
L
Dt
Lc
r= L_ [10]

(%]

f
Equations 11 and 12 can be solved analytically using the separation

of variables method?® Typical values of parameters are used for the
simulation and are listed in Tabl€'I.

Approximate Model

We can predict the concentration profile in the porous electrode
by solving for the concentration equation in the porous electrode
alone. To do this, we need the boundary condition at the porous
electrode/separator interface. We arrive at this boundary condition in
this section.

The dimensionless concentration in the separator is assumed to
be a parabolic polynomial ix®

C,=a+ bX+eX [19]
wherea, b, ande are functions of time and are obtained from the
governing equations and boundary conditions. The governing equa-
tion is satisfied in an average sense. That is Eq. 19 is substituted into
the equation foIC; (Eq. 11 and integrated from O to 1 to obtain

d(a) d(b) d(e)

at " 2at * 3ar ~ %

[20]

The average concentration in the separaﬁf)(is obtained by in-
tegrating Eg. 19 from O to 1

Ci=a+ = + [21]

N T
w| @

The governing equations and boundary conditions are converted t@;sing the boundary condition 2 = 0 (Eq. 15 and Eq. 19 we get

dimensionless form using Eq. 10 as follows

acl_azclf 0<X<1 11
PR [11]
aC, a%C,

¥_£6X2 +J forl<X<r [12]

whereJ is the dimensionless current density given by

b=rle [22]
Substituting Eqg. 19 in 17 we get
atb+e=C,atX=1 [23]

Using Eq. 20, 22, and 23 we can calculatéh, ande. Equation 18
is simplified as
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9C, rJe b~ Table Il. Values of eigenvalues and -coefficients forr=5
1.5 — ’
W = 7 + 3C, 3C, [24] £=0.35.
whereC; is obtained by substituting, b, ande in Eq. 21 M (Ba- 39 " An (Eq- 40
_ 0.3414 0 —13.8967
dcC; 3rde — 0.7672 1 1.7773
G - 3 t38C—3C [25] 1.2225 2 ~0.5095
1.6926 3 0.22124
. . . 2.164 4 —0.1219
Because the boundary condition at the interface is known, the con- 5 g375 5 0.07799
centration profile in the porous electrode is obtained by solving the
following governing equation
aC, 92C, and the eigenvalues are calculated using the transcendental equation
F:\/;W‘FJ](OFZ:otOT [26]

r Nl
85’4sin<8ﬁ2;1)()\ﬁ -3) -3 cos(e—f,z))\n =0 forn=12,..x
whereZ = X — 1 and the boundary conditions are

[39]
159C2 rJe — .- ; i i i
et = +3C,—3C, atZz=0 [27] The coefficientA, in Eq. 37 is obtained by using the method of
residues
aC,
—_— = = P
5 —oatz=r [28] A, = forn=1.2,.x [40]

In addition,El is governed by Eq. 25. The initial conditions are

Ci=C=1latr=0 [29] whereP is the numerator an@ is the denominator of] defined in

o ) ) . Eq. 36. Numerical values oA, and X\, for ¢ = 0.35,r = 5 are
Next, to simplify the governing equations further we introd@g  given in Table II. Note that both eigenvalues and coefficients are

= 1+ Ju,andC; = 1 + Ju; to obtain the following equations  independent o8, the dimensionless current density. Substituting the
value ofu, in C, = 1 + Ju, we get

Oz _ fazuz +1 [30]
or  V¥az2 - An(r — 2) )
C,=1+J|w,+ 2 A, co T exq*KnT)
au, re _ n=1
15 "2 _ % _ =
7 > +3u;—3U; atZ=0 [31] [41]
5 The steady-state profile in the porous electrode may be obtained by
57 0Oatz=1 [32] neglecting the transient term in Eq. 41 as
Ju, 3re " - - Copreo =1+ JIw, =1
—_— = —— u, — 3u
dr 2 2 ' . Jer3 +3r2 + 3re¥ — 3(1 + er)(1 + 1 — X)?
U=u,=0atr=0 [34] 6(1 + er)\e
. . . o [42]
Equation 30 is solved in the Laplace domain with the boundary
condition atZ = 0 (Eq. 3) Average Concentration and Steady-State Concentration
5 5 L Profiles
Uy(S) = q cos)’(% + > [35] Unlike common transient diffusion modéf® the exact model
€ s

(Eg. 11-18 cannot be solved to obtain the steady-state profile by
equating the transient terms to zero. This is true because the solution
where of steady-state versions of Eq. 11 and 12 involves four constants of
integration of which only three can be found using the boundary
ser — 6(1 + er) [36] conditions defined in Eq. 15- To find the fourth constant of

q= 172 172 ; ; ;
s integration, Eqg. 11 and 12 are integrated as
25%72 85/4Sin|'(w (s+3)+ 3\5005}‘(W) 9 g 9
& & flacl ( aC, aC, ) (43
Equation 35 is inverted to the time domain by using the Heaviside o 07 IXx=1 9Xx=0
expansion theorefras follows
% and
Ao(r = Z) 2
Up = W, + >, A co — exp(—\pT) [37] 141 5C, aC, aC,
h=1 —dX = | o0—— - +3r  [44]
1 0T IXyx—14r  0Xx—1

wherew, is the steady-state profile given by
If we denote the average concentration in the separator and the

3 2 3/2 _ _ 2 — —
er” + 3r° + 3re 31 + en)(r — 2) [38] electrode asC; and C,, respectively, Eq. 43 and 44 can be com-

W =
2 6(1 + &r)e bined to obtain
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Figure 2. Dimensionless concentration at the current collector is plotted . . . . .
against dimensionless time for different rates of discharge. The solid lineg~igure 3. Dimensionless concentration at the electrode-separator interface is
represent the exact modéEq. 11-18 and the dotted lines represent the Plotted against dimensionless time for different rates of discharge. The solid

approximate solution developéBq. 41). 1C rate corresponds to 60 A’m lines represent the exact model. 11-18 and the dotted lines represent the
approximate solution developélq. 41). 1C rate corresponds to 60 Afm

dc, dc,
+er——s =0 [45]

dar dr The dimensionless concentration at the porous electrode/

separator interface is plotted as a function of dimensionless time for
different values ofr (ratio of electrode length to the separator
length in Fig. 4. We observe that for higher valuesrothe dimen-
sionless concentration depletes faster. From Fig. 2, 3, and 4 we
conclude that the approximation is good and may be used with no
loss of accuracy.

. . The methodology and boundary condition developed for concen-
Steady-state versions .Of Eq. 11 and 12 can be solv_ed W'th_Eq' Lvration at the separator/porous electrode interface in this article can
17, 18, and 46 to obtain the steady-state concentration profiles as g eytended to more realistic models. This is true because even for

Equation 45 can be integrated using the initial conditigg. 14 to
get

C,+erCy=1+er [46]

1 r2
Cioiw =1—Jer|1—X— +
L 2(1 + er)  3e(l + er)
[47]
and
er® + 3r2 + 3red? — 3(1 + er)(1 + r — X)?
C2,T=30 = 1 + J

6\e(l + er)

complicated models the governing equation for concentration in the
separator is very similar to Eq.# Hence, the boundary condition
developed for electrolyte concentration at the porous electrode/
separator interfacéEq. 3) may be used for complicated models
also. In addition, the boundary conditions for the electrolyte poten-
tial and solid-phase potential at the porous electrode/separator inter-
face are known accurately because the entire current is carried by
the electrolyte phase at the interfdeeln our next paper, we plan to
predict the discharge behavior of the cell sandwich by solving for
governing equations in the porous electrode alone without solving

[48] for the profiles in the separator. The boundary condition developed

) o in this paper should also find use in theoretical analysis of porous
We observe that the steady-state concentration profile in the porous

electrode obtained using the exact mo@#d. 49 matches exactly
with the steady-state profile obtained with the approximate model

(Eq. 42. 1
Results and Discussion 0.95 .
The profiles obtained from the simplified model are compared 008'2 —

with the exact modelEq. 11-18 in Fig. 2 and 3. The dimensionless
concentration at the current collector is plotted as a function of

C, (Dimensionless concentration at
the current collector)
o
«©
-
I
(=)}

dimensionless time for 30, 60, and 120 A/mates using both the 0.75
approximate model developed and the exact mdHgl 11-18 in 0.7
Fig. 2. We observe that the approximate model predicts the concen- r=3§
tration profiles accurately. We observe that the dimensionless con- 0.65
centration decreases with time for a given rate of discharge, and 0.6 =10
approaches a steady state. In addition, we observe that the dimen- 0.55
sionless concentration decreases faster for higher rates of discharge. 05
The dimensionless concentration at the porous electrode/ "0 5 10 15 20 25 30 35 40 45 50

separator interface is plotted as a function of dimensionless time for
30, 60, and 120 A/fin Fig. 3. We observe that the approximate
mode_l pred!cts the Concentratl_on profiles accurately. We Obse.rve thaféigure 4. Dimensionless concentration at the current collector plotted
_the dlmenSI(_)nIe_SS concent_ratlon at the _electrodelseparator Intel’f"’“%fagainst dimensionless time for different values éfatio of electrode length
increases with time for a given rate of discharge, and approaches g separator lengjhat the 1C rate of discharg®0 A/m?). The solid lines
steady state. In addition, we observe that the dimensionless concemepresent the exact modéEq. 11-18 and the dotted lines represent the
tration increases faster for higher rates of discharge. approximate solution developdgq. 42.

T (Dimensionless time)
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electrodes and impedance simulation of porous electrodes. We plan  n number of electrons transferred ¢ 1 for the simulatioh
to publish this later. C,, U; dimensionless average concentratisae Eq. 21
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