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A Boundary Condition for Porous Electrodes
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A boundary condition for electrolyte concentration at the porous electrode/separator interface is developed. This boundary con-
dition helps predict the electrolyte concentration profile in the porous electrode without having to solve for the concentration
profile in the separator.
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Electrochemical models that predict the performance of batt
accurately are usually complex because of the nonlinear coupl
the dependent variables in the governing equations.1,2 These model
have been used by various researchers to optimize the cell d
study the effect of system parameters and thermal behavior. M
ing of electrochemical behavior of secondary batteries~like lithium-
ion batteries! involves solving electrolyte concentration and elec
lyte potential in the separator; and electrolyte concentra
electrolyte potential, solid-state concentration, and solid-state p
tial in the porous electrode.1,2 Even when one-dimensional transp
~in x! is considered, these models involve two coupled nonli
partial differential equations~in x, t! in the separator and thr
coupled nonlinear partial differential equations~in x, t! in the porous
electrode.1,2 In addition, solid-state diffusion should be solved in
pseudodimension~r, t! in the porous electrode. For predicting
thermal behavior, one must add an additional equation for tem
ture in both the separator and the porous electrode.

Analytical solutions for the mathematical models of Li-ion b
teries are available for very few limiting cases.3,4 Doyle and
Newman3 presented a few limiting cases and analyzed the ele
chemical behavior of Li-ion batteries using these simplified mo
under certain operating conditions. Complexity of the models~and
hence the need for numerical solution! arises due to one or more
the following reasons:~i! nonlinear coupling between the electrol
potential and electrolyte concentration~concentrated solutio
theory!; ~ii ! nonlinear Butler-Volmer kinetics,~iii ! nonlinear depen
dence of exchange current on the electrolyte or solid-state co
tration, (iv) nonlinear dependence of open-circuit potential on
solid-state concentration, (v) dependence of electrolyte conductiv
or electrolyte diffusion coefficient on the electrolyte concentra
(v i ) dependence of solid-state diffusion coefficient on the s
state concentration, and (v i i ) dependence of transfer number on
electrolyte concentration. Typically, Li-ion battery models are c
plicated because of a combination of more than one of the a
reasons.

A Li-ion cell sandwich consists of a lithium foil, separator, an
porous electrode.1,2 To obtain the concentration profiles in the
rous electrode, one must solve for the concentration in the profi
both the separator and the porous electrode. Even when the po
drop in the porous electrode dominates the net voltage of the
sandwich, one must solve for the equations in both separato
porous electrode. This is true because the boundary condition f
electrolyte concentration at the porous electrode/separator int
is not known. In this article, we arrive at this boundary condition
modeling galvanostatic discharge behavior of a Li-ion cell sand
under solution-phase diffusion limitations.
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Theoretical Development

The geometry modeled is shown in Fig. 1. The cell consists
lithium-ion foil, a microporous separator, and a porous elect
~e.g., carbon or LiMn2O4). The following assumptions are made:~i!
discharge behavior is dominated by solution-phase diffu
limitations,3 ~ii ! kinetic and diffusion-phase limitations are ne
gible, and~iii ! diffusion coefficient and transfer number are indep
dent of the electrolyte concentration.

In the absence of potential gradients and under uniform cu
distribution, the electrolyte concentration is governed by simpl
equations.3,4 The geometry modeled consists of two regions, a s
rator (0 , x , Ls) and a porous electrode (Ls , x , Ls 1 Lc).
The concentration of electrolyte in the separator (c1 , mol/m3! is
governed by Fick’s law of diffusion

]c1

]t
5 D

]2c1

]x2 @1#

whereD is the diffusion coefficient~m2/s! of the electrolyte. A ma
terial balance governs the concentration of electrolyte (c2 , mol/m3!
in the porous electrode

«
]c2

]t
5 D«1.5

]2c2

]x2 1 a jn~1 2 t1! @2#

where« is the porosity of the electrode,a is the specific interfacia
area~m21!, and j n is the pore wall flux of lithium ions~mol/m2/s!.
Note that the Bruggeman expression has been used for obtaini
effective diffusivity in the electrolyte.5

Uniform initial conditions are assumed throughout the sand

c1 5 c2 5 c0 at t 5 0 @3#

For a galvanostatic discharge, the rate of discharge governs the
flux at x 5 0 ~Li foil !

]c1

]x
5 2

I ~1 2 t1!

nDF
at x 5 0 @4#

whereI is the current density~A/m2!, n is the number of electron
transferred in the electrochemical reaction (n 5 1 here!, and F is
the Faraday constant. The mass flux is zero at the current co
(x 5 Ls 1 Lc)

]c2

]x
5 0 at x 5 Ls 1 Lc @5#

Concentration and mass flux are continuous at the separator-p
electrode interface (x 5 Ls)

c1 5 c2 at x 5 Ls @6#

and
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]c1

]x
5 «3/2

]c2

]x
at x 5 Ls @7#

Equations 1-7 govern the concentration distributions in the
sandwich~separator and porous electrode!.

When the open-circuit potential depends strongly on the sta
charge of the system or when kinetic resistances dominate o
resistances,3,4 it is possible to assume thatj n is given by its averag
value everywhere in the porous electrode

j n 5 2
I

aFLc
@8#

When Eq. 8 is substituted in Eq. 2 we get

«
]c2

]t
5 D«1.5

]2c2

]x2 2
I ~1 2 t1!

nFLc
@9#

The following dimensionless variables are introduced

C1 5
c1

c0

C2 5
c2

c0

X 5
x

Ls

t 5
Dt

Ls
2

r 5
Lc

Ls
@10#

The governing equations and boundary conditions are conver
dimensionless form using Eq. 10 as follows

]C1

]t
5

]2C1

]X2 for 0 , X , 1 @11#

]C2

]t
5 A«

]2C2

]X2 1 J for 1 , X , r @12#

whereJ is the dimensionless current density given by

Figure 1. Lithium-ion cell sandwich, consisting of lithium-foil, separat
and porous electrode.
J 5 2
I ~1 2 t1!Ls

2

FDLcc0«
@13#

The dimensionless initial condition is

C1 5 C2 5 1 at t 5 0 @14#

The dimensionless boundary conditions are

]C1

]X
5 J«r at X 5 0 @15#

]C2

]X
5 0 at X 5 1 1 r @16#

C1 5 C2 at X 5 1 @17#

]C1

]X
5 «3/2

]C2

]X
at X 5 1 @18#

Equations 11 and 12 can be solved analytically using the sepa
of variables method.3,6 Typical values of parameters are used for
simulation and are listed in Table I.7

Approximate Model

We can predict the concentration profile in the porous elec
by solving for the concentration equation in the porous elec
alone. To do this, we need the boundary condition at the po
electrode/separator interface. We arrive at this boundary condit
this section.

The dimensionless concentration in the separator is assum
be a parabolic polynomial inX8

C1 5 a 1 bX 1 eX2 @19#

wherea, b, ande are functions of time and are obtained from
governing equations and boundary conditions. The governing
tion is satisfied in an average sense. That is Eq. 19 is substitute
the equation forC1 ~Eq. 11! and integrated from 0 to 1 to obtain

d~a!

dt
1

d~b!

2dt
1

d~e!

3dt
5 2e @20#

The average concentration in the separator (C̄1) is obtained by in
tegrating Eq. 19 from 0 to 1

C̄1 5 a 1
b

2
1

e

3
@21#

Using the boundary condition atX 5 0 ~Eq. 15! and Eq. 19 we ge

b 5 rJ« @22#

Substituting Eq. 19 in 17 we get

a 1 b 1 e 5 C2 at X 5 1 @23#

Using Eq. 20, 22, and 23 we can calculatea, b, ande. Equation 18
is simplified as

Table I. Values of parameters used in the simulation.

Parameters Value Parameters Value

D 2.6 3 10210 m2/s « 0.35
I app 60 A/m2 Ls 25 mm
F 96,487 Lc 125 mm
t1 0.20 c0 1000 mol/m3
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«1.5
]C2

]X
5 2

rJ«

2
1 3C2 2 3C̄1 @24#

whereC̄1 is obtained by substitutinga, b, ande in Eq. 21

dC̄1

dt
5 2

3rJ«

2
1 3C2 2 3C̄1 @25#

Because the boundary condition at the interface is known, the
centration profile in the porous electrode is obtained by solving
following governing equation

]C2

]t
5 A«

]2C2

]Z2 1 J for Z 5 0 to r @26#

whereZ 5 X 2 1 and the boundary conditions are

«1.5
]C2

]Z
5 2

rJ«

2
1 3C2 2 3C̄1 at Z 5 0 @27#

]C2

]Z
5 0 at Z 5 r @28#

In addition,C̄1 is governed by Eq. 25. The initial conditions are

C̄1 5 C2 5 1 at t 5 0 @29#

Next, to simplify the governing equations further we introduceC2

5 1 1 Ju2 andC̄1 5 1 1 Jū1 to obtain the following equation

]u2

]t
5 A«

]2u2

]Z2 1 1 @30#

«1.5
]u2

]Z
5 2

r«

2
1 3u2 2 3ū1 at Z 5 0 @31#

]u2

]Z
5 0 at Z 5 1 @32#

dū1

dt
5 2

3r«

2
1 3u2 2 3ū1 @33#

ū1 5 u2 5 0 at t 5 0 @34#

Equation 30 is solved in the Laplace domain with the boun
condition atZ 5 0 ~Eq. 31!

u2~s! 5 q coshS As~r 2 Z!

«~1/4! D 1
1

s2 @35#

where

q 5
s«r 2 6~1 1 «r !

2s3/2F«5/4 sinhS s1/2r

«1/4 D ~s 1 3! 1 3As coshS s1/2r

«1/4 D G @36#

Equation 35 is inverted to the time domain by using the Heav
expansion theorem9 as follows

u2 5 w2 1 (
n51

`

An cosS ln~r 2 Z!

«1/4 Dexp~2ln
2t! @37#

wherew2 is the steady-state profile given by

w2 5
«r 3 1 3r 2 1 3r«3/2 2 3~1 1 «r !~r 2 Z!2

6~1 1 «r !A«
@38#
-

and the eigenvalues are calculated using the transcendental eq

«5/4 sinS lnr

«1/4D ~ln
2 2 3! 2 3 cosS lnr

«1/4Dln 5 0 for n 5 1,2,...}

@39#

The coefficientAn in Eq. 37 is obtained by using the method
residues as6,9

An 5
P

S dQ

ds D
s52l

n
2

for n 5 1,2,...} @40#

whereP is the numerator andQ is the denominator ofq defined in
Eq. 36. Numerical values ofAn and ln for « 5 0.35, r 5 5 are
given in Table II. Note that both eigenvalues and coefficients
independent ofJ, the dimensionless current density. Substituting
value ofu2 in C2 5 1 1 Ju2 we get

C2 5 1 1 JS w2 1 (
n51

`

An cosS ln~r 2 Z!

«1/4 Dexp~2ln
2t!D

@41#

The steady-state profile in the porous electrode may be obtain
neglecting the transient term in Eq. 41 as

C2,t5 } 5 1 1 Jw2 5 1

1 J
«r 3 1 3r 2 1 3r«3/2 2 3~1 1 «r !~1 1 r 2 X!2

6~1 1 «r !A«

@42#

Average Concentration and Steady-State Concentration
Profiles

Unlike common transient diffusion models,10 the exact mode
~Eq. 11-18! cannot be solved to obtain the steady-state profil
equating the transient terms to zero. This is true because the so
of steady-state versions of Eq. 11 and 12 involves four consta
integration of which only three can be found using the boun
conditions defined in Eq. 15-18.3,6 To find the fourth constant
integration, Eq. 11 and 12 are integrated as

E
0

1 ]C1

]t
dX 5 S ]C1

]XX51
2

]C1

]XX50
D @43#

and

E
1

11r ]C2

]t
dX 5 A«S ]C2

]XX511r
2

]C2

]XX51
D 1 Jr @44#

If we denote the average concentration in the separator an

electrode asC̄1 and C̄2 , respectively, Eq. 43 and 44 can be co
bined to obtain

Table II. Values of eigenvalues and coefficients for rÄ5,
«Ä0.35.

ln ~Eq. 39! n An ~Eq. 40!

0.3414 0 213.8967
0.7672 1 1.7773
1.2225 2 20.5095
1.6926 3 0.22124
2.164 4 20.1219
2.6375 5 0.07799
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dC̄1

dt
1 «r

dC̄2

dt
5 0 @45#

Equation 45 can be integrated using the initial condition~Eq. 14! to
get

C̄1 1 «rC̄2 5 1 1 «r @46#

Steady-state versions of Eq. 11 and 12 can be solved with E
17, 18, and 46 to obtain the steady-state concentration profile

C1,t5` 5 1 2 J«r S 1 2 X 2
1

2~1 1 «r !
1

r 2

3A«~1 1 «r !
D
@47#

and

C2,t5` 5 1 1 J
«r 3 1 3r 2 1 3r«3/2 2 3~1 1 «r !~1 1 r 2 X!2

6A«~1 1 «r !
@48#

We observe that the steady-state concentration profile in the p
electrode obtained using the exact model~Eq. 48! matches exactl
with the steady-state profile obtained with the approximate m
~Eq. 42!.

Results and Discussion

The profiles obtained from the simplified model are comp
with the exact model~Eq. 11-18! in Fig. 2 and 3. The dimensionle
concentration at the current collector is plotted as a functio
dimensionless time for 30, 60, and 120 A/m2 rates using both th
approximate model developed and the exact model~Eq. 11-18! in
Fig. 2. We observe that the approximate model predicts the co
tration profiles accurately. We observe that the dimensionless
centration decreases with time for a given rate of discharge
approaches a steady state. In addition, we observe that the d
sionless concentration decreases faster for higher rates of disc

The dimensionless concentration at the porous elect
separator interface is plotted as a function of dimensionless tim
30, 60, and 120 A/m2 in Fig. 3. We observe that the approxim
model predicts the concentration profiles accurately. We observ
the dimensionless concentration at the electrode/separator int
increases with time for a given rate of discharge, and approac
steady state. In addition, we observe that the dimensionless co
tration increases faster for higher rates of discharge.

Figure 2. Dimensionless concentration at the current collector is plo
against dimensionless time for different rates of discharge. The solid
represent the exact model~Eq. 11-18! and the dotted lines represent
approximate solution developed~Eq. 41!. 1C rate corresponds to 60 A/m2.
,
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The dimensionless concentration at the porous elect
separator interface is plotted as a function of dimensionless tim
different values ofr ~ratio of electrode length to the separa
length! in Fig. 4. We observe that for higher values ofr, the dimen
sionless concentration depletes faster. From Fig. 2, 3, and
conclude that the approximation is good and may be used wi
loss of accuracy.

The methodology and boundary condition developed for con
tration at the separator/porous electrode interface in this articl
be extended to more realistic models. This is true because ev
complicated models the governing equation for concentration i
separator is very similar to Eq. 1.1,2 Hence, the boundary conditi
developed for electrolyte concentration at the porous elect
separator interface~Eq. 31! may be used for complicated mod
also. In addition, the boundary conditions for the electrolyte po
tial and solid-phase potential at the porous electrode/separator
face are known accurately because the entire current is carri
the electrolyte phase at the interface.1,2 In our next paper, we plan
predict the discharge behavior of the cell sandwich by solving
governing equations in the porous electrode alone without so
for the profiles in the separator. The boundary condition devel
in this paper should also find use in theoretical analysis of po

Figure 3. Dimensionless concentration at the electrode-separator interf
plotted against dimensionless time for different rates of discharge. The
lines represent the exact model~Eq. 11-18! and the dotted lines represent
approximate solution developed~Eq. 41!. 1C rate corresponds to 60 A/m2.

Figure 4. Dimensionless concentration at the current collector plo
against dimensionless time for different values ofr ~ratio of electrode lengt
to separator length! at the 1C rate of discharge~60 A/m2!. The solid lines
represent the exact model~Eq. 11-18! and the dotted lines represent
approximate solution developed~Eq. 42!.
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electrodes and impedance simulation of porous electrodes. W
to publish this later.
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List of Symbols

a interfacial area, m21

c concentration of the electrolyte, mol/m3

t time, s
x distance, m
D diffusion coefficient of the electrolyte, m2/s
j n pore wall flux of Li ions, mol/m2/s
t1 transfer number

I current density, A/m2

Lc , Ls length of the electrode, m, length of the separator, m
F Faraday’s law constant, 96,487 C/g equiv

C,u dimensionless concentration,c/c0
X,Z dimensionless distance,X 5 x/L, Z 5 X 2 1

J dimensionless current density~see Eq. 13!

r ratio of thickness of the electrode to the thickness of the separator,Lc /Ls
n

r

n number of electrons transferred (n 5 1 for the simulation!

C̄1 , ū1 dimensionless average concentration~see Eq. 21!

Greek

« porosity of the electrode
ln eigenvalues
t dimensionless time,t 5 Dt/Lc

2

ubscripts

0 initial condition
1 separator
2 porous electrodes
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